DCI Archives » Acacia Transforming communications networks Mon, 24 Jun 2024 21:39:13 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 Be Part of the Terabit Era Today https://acacia-inc.com/blog/be-part-of-the-terabit-era-today/ Mon, 09 Oct 2023 23:00:23 +0000 https://acacia-inc.com/blog/be-part-of-the-terabit-era-today-3/ 1T coherent pluggable module that provides operational advantages over embedded designs.]]> In a previous blog, we discussed how network operators can leverage the latest Terabit Era Class 3 coherent technology to maximize network coverage by transporting nx400GbE client traffic across their networks. Acacia is currently shipping the Coherent Interconnect Module 8 (CIM 8) module leveraging this Class 3 technology, enabling network operators to reach every part of their optical network with the latest terabit era technology. The CIM 8 is the first coherent module on the market that breaks through the terabit threshold, providing 1.2T transmission over a single wavelength. It’s also the first >1T coherent pluggable module that provides operational advantages over embedded designs.

To date, multiple system vendors have converged around Class 3-based solutions (Figure 1), recently announcing their next generation offerings. This industry convergence creates the benefit of economies of scale and broad industry investments into the technology used in this baud rate class, the same class being used for 800G MSA pluggable solutions.

Figure 1.  Acacia and other coherent vendors have announced Class 3 Terabit Era solutions.

 

Advancements Resulting in 65% Power-per-Bit Savings Over Current Competing Solutions
Doubling the baud rate from Class 2 to Class 3 in silicon was a significant engineering achievement, combining design advancements in high-speed Radio Frequency (RF) and Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC) components plus well-designed co-packaging integration of silicon and silicon photonic (SiPh) components. These achievements led to Acacia’s successful 140Gbaud in-house capability that is being leveraged in the commercially available CIM 8 solution.

With high-volume shipments of multiple coherent Class 2 module products utilizing Acacia’s 3D Siliconization, this proven co-packaging integration solution provided the foundation for extending this capability to Class 3 140Gbaud implementation utilized in the CIM 8 (Figure 2). 3D Siliconization maximizes signal integrity by co-packaging all high-speed components including the coherent Digital Signal Processor (DSP) application-specific integrated circuit (ASIC), transmitter and receiver silicon photonics, and 3D stacked RF components into a single device that is manufactured in a standard electronics packaging house. Silicon technology has demonstrated cost and power advantages over alternative technologies, making it the material system of choice for these higher baud rates. These advancements enabling a doubling of the baud rate have led to a 65% power-per-bit savings of CIM 8 over current competing solutions that utilize alternative optical material systems. In addition, the size and power savings of this latest generation enabled the ability to house this 1.2T 140Gbaud solution in a pluggable form-factor.

Figure 2.  An example of 3D Siliconization used in the CIM 8 module, resulting in a volume electronics manufacturable high-speed single device larger than a quarter.

2nd Generation 3D Shaping Advances Coherent Performance
The CIM 8 is powered by Jannu, Acacia’s 8th generation coherent DSP ASIC. The design greatly expands on the success of the Pico DSP ASIC predecessor used in the widely deployed performance-optimized Class 2 AC1200 module (Figure 1). The AC1200 was the first module to introduce 3D Shaping, which provided finely tunable Adaptive Baud Rate up to 70Gbaud as well as finely tunable modulation up to 6 bits/symbol. The AC1200 had achieved record breaking spectral efficiency at the time of its introduction, as evidenced by a subsea trial over the MAREA submarine cable connecting Virginia Beach, Virginia to the city of Bilbao in Spain. Finely tunable baud rate helps maximize spectral efficiency in any given passband channel, converting excess margin into additional capacity/reach, and avoids wasted bandwidth due to network fragmentation.

Figure 3.  A popular feature is the fine-tunability of baud rate introduced by Acacia with the Class 2 AC1200; CIM 8 incorporates the same Adaptive Baud feature (as part of 2nd Generation 3D Shaping) for Class 3 baud rate tunability.

The 5nm Jannu DSP ASIC in CIM 8 intelligently optimizes optical transmission using 2nd Generation 3D Shaping with an increased Adaptive Baud Rate tunable range up to 140Gbaud, as well as finely tunable modulation up to 6 bits/symbol using enhanced Probabilistic Constellation Shaping (PCS). With 2nd Generation 3D Shaping, the CIM 8 module can achieve a 20% improvement in spectral efficiency.

Terabit Era Solutions Provide Full Network Coverage
Class 3 technology not only ushers in the terabit era, but also enables full multi-haul network coverage as the high baud rate capabilities transport nx400GbE client traffic across a service provider’s entire network. Full network coverage is not only enabled by adjustment of the modulation, but also implies the capability to optimize for various network conditions which include overcoming transmission impairments.

Figure 4. CIM 8 1.2T, 1T, 800G, and 400G transmission constellations operating at Class 3 baud rates providing wide network coverage addressing multiple applications.

CIM 8 offers significant power-per-bit reductions as well as cost efficiencies for various optical network transport applications.

DCI/Metro Reaches
For transporting 3x400GbE or 12x100GbE client traffic with metro reaches in a single carrier, the CIM 8 is tuned to ~6 bits/symbol (equivalent to 64QAM, example constellation on left). Data center interconnect (DCI) applications would take advantage of this high-capacity 1.2T transport capability to tie data center locations together. This amounts to 38.4T per C-band fiber capacity.

Long-Haul Reaches

For transporting 2x400GbE with long-haul reaches, the CIM 8 is tuned to ~4 bits/symbol (equivalent to 16QAM, example constellation on the right). Wide 800G network coverage is achieved with the Class 3 140Gbaud capabilities enabling service providers to provide end-to-end 2x400GbE, 8x100GbE, or native 800GbE transport across their networks, covering essentially all terrestrial applications.

Ultra-Long-Haul/Subsea Reaches

And for ultra-long-haul/subsea reaches, the CIM 8 is tuned to ~2 bits/symbol (equivalent to QPSK, example constellation on the left). As with the previous scenarios, spectral efficiency with a wavelength channel is optimized by fine-tuning of the baud rate. These high spectrally efficient modes can carry mixed 100GbE and 400GbE traffic over the longest subsea routes in the world with lowest cost per bit. It’s worth noting that almost a decade ago, Acacia demonstrated SiPh capabilities for subsea coherent deployments. CIM 8 incorporates second generation non-linear equalization (NLEQ) capabilities to mitigate the non-linear effects of optical transmission especially for these ultra-long-haul/subsea links providing additional OSNR.

In all the above scenarios, the CIM 8 utilizes advanced power-efficient algorithms to compensate for chromatic and polarization dependent dispersion. In addition, the module accounts for coverage of aerial fiber network segments that require fast state-of-polarization (SOP) tracking and recovery due to lightning strikes. The SOP tracking speed of CIM 8 is double the speed of its predecessor. This fast SOP tracking feature can also be utilized for sensing applications.

Network Operators Achieve Record Breaking Field Trials with CIM 8
CIM 8 capabilities have already been put to the test as illustrated by multiple record breaking field trials across a wide range of applications. These include >5600km 400G transmission over a mobile carrier’s backbone network, 2200km 800G transmission over a research and education network, and >540km 1T transmission over a wholesale carrier’s network.

Acacia continues to demonstrate its technology leadership by leveraging mature knowledge in proven silicon-based coherent technology, producing the first shipping coherent solution to lead the industry into the Terabit Era with the 1.2T pluggable CIM 8 module. With the breakthrough capability of 140Gbaud transmission along with the advanced Jannu DSP ASIC using 2nd Gen 3D Shaping and leveraging 3D Siliconization, network operators can support full network coverage for multi-haul applications, especially to support growing demands for nx400GbE and upcoming 800GbE traffic.

References:
Blog: Terabit Today: Maximize Network Coverage
Blog: How Industry Trends are Driving Coherent Technology Classifications
Blog Series: The Road Ahead for Next-Generation Multi-Haul Designs Part 1, Part 2, Part 3

]]>
How Service Providers Benefit from Transmission Flexibility https://acacia-inc.com/blog/how-service-providers-benefit-from-transmission-flexibility/ Fri, 23 Jul 2021 05:10:15 +0000 https://acacia-inc.com/blog/how-service-providers-benefit-from-transmission-flexibility/ Today, service providers need to be nimble and adaptable to address today’s changing network requirements and growing bandwidth demand. Some are turning to coherent solutions that offer configuration flexibility including transmission options from 100G to 1.2T. These solutions enable common hardware to address multiple deployment scenarios and reduce the need for costly regeneration nodes for long-haul and ultra-long-haul links.

As an example, Acacia’s high-performance Pico DSP-based 1.2 Terabit solution is currently deployed in well over one hundred networks around the globe and has been adopted by three of the four largest hyperscalers. In 2020 alone, Acacia shipped more than 30,000 Pico-based ports as customers increasingly recognized the competitive benefits that high-performance, flexible coherent transmission solutions can provide.

Network Transmission Flexibility Benefits

Multi-haul coherent solutions like the Pico DSP-based 1.2 Terabit solution are software configurable transponder modules that provide various transmission capacities and reaches. By varying the modulation order and baud rate settings, it can provide flexible options for service providers.

range of applications

A multi-haul coherent solution addresses a range of network applications.

Balancing Modulation Order and Baud Rate

A common method of increasing throughput of a coherent channel is to increase the modulation order. However, this may result in a reduction in reach due to reduced optical signal to noise ratio (OSNR) tolerance for the higher modulation orders. Alternatively, the baud rate could be increased while maintaining a lower modulation order which provides additional capacity per channel with minimal sacrifice to reach.

Maximizing the channel capacity using continuously tunable baud rate can convert unused spectrum into usable capacity, with the goal to fill up the available channel bandwidth. However, as discussed in this whitepaper, increasing baud rate provides minimal improvements in fiber capacity once the transmission is well-matched to the channel.

convert spectrum to useable capacity

Increasing transmission baud rate proportionally increases the transmission spectrum and can be used to convert unused spectrum into useable extra capacity.

With transmission flexibility, service providers can configure their client traffic with the following flexible options:

  • 12×100 GbE or 3×400 GbE with 64 QAM modulation for DCI edge applications
  • 8×100 GbE or 2×400 GbE with 16 QAM modulation for metro/regional and long haul
  • 4×100 GbE or 1×400 GbE QPSK for the most challenging terrestrial and submarine networks

To ensure a smooth migration from 100GbE to 400GbE, it’s important to have a solution that can efficiently transport either type of traffic, or a combination of both, without restrictions on performance and functionality.

Increase Performance and Reach with 400GbE Long Haul

With 400GbE becoming the “common currency” for high-capacity Ethernet transmission, it’s important to have a solution that can support this traffic over long distances. For service providers supporting 400GbE traffic they can use Acacia’s Pico DSP-based solution and choose from various configurations, as previously mentioned, including the option to combine two 400GbE client signals into an 800G 150 GHz channel for transmission over their metro and long-haul networks.

Hyperscaler 400GbE example

Leveraging Acacia’s Pico DSP-based solution service providers can combine two 400GbE client signals into an 800G 150GHz channel for long haul transmission.

Migrating from 100G to Higher Speeds Just Got Easier

Multi-haul coherent solutions enable network operators to easily migrate from 100G traffic toward 400G and higher speeds to deploy new and exciting applications and services. Networks utilizing flexible coherent transmission can provide support for growing client traffic across the entire network—from DCI edge, metro, long-haul, and all the way to submarine. Learn more in this video.

]]>
DCI Edge Transforming with Today’s 400ZR Modules https://acacia-inc.com/blog/dci-edge-transforming-with-todays-400zr-modules/ Fri, 24 Apr 2020 00:36:55 +0000 https://acacia-inc.com/blog/dci-edge-transforming-with-todays-400zr-modules/ Hyperscalers continue to expand their network capacity to meet growing bandwidth demands. Evolving their internal network infrastructure is an area of focus in order to handle growing internal data traffic to support information collection, analysis, and content transfer. Another area of focus may be on minimizing network hops to support latency sensitive cloud-based applications. In connection with the ongoing COVID-19 pandemic, some network operators have reported surges in bandwidth demand as more of the population has moved to on-line meetings and increased cloud services, which in turn has driven an increase of traffic between data centers and throughout the access network.

These examples illustrate how the interconnects that make up the data center network infrastructure play an important role in a hyperscaler’s network evolution. Recently introduced 400G switches and pluggable optical modules are new tools that enable hyperscalers to transform how data center networks are being architected, with an anticipated impact of comparable magnitude to when 10G and later 100G solutions were introduced. These 400G solutions are designed to enable network operators to address increasing bandwidth demand through a simplified network architecture, targeting the reduction of both capex and opex.

Data Center NetworkFigure 1: Data center network operators can scale up DCI bandwidth with 400G 400ZR and OpenZR+ solutions.

High-capacity switch and router platforms with 400 gigabit Ethernet ports are transforming hyperscale data center networks by enabling higher switching capacity (using 12.8/25.6Tbps ASICs). Recently introduced 400ZR and OpenZR+ QSFP-DD or OSFP form-factor coherent optical modules are designed to plug into these ports. A network operator with a sizeable percentage of 400G optical Ethernet connections between switches/routers less than 120km links in their edge network can utilize 400ZR modules, while OpenZR+ modules can be used for regional links greater than 120km. Network operators can plug these modules into ports alongside shorter reach client optics modules.

New deployment opportunities can leverage the capability of having both transport (400ZR/OpenZR+) and client optics plugged in the same switch/router to support an IP-over-DWDM (IPoDWDM) network architecture where switching is performed at the IP layer rather than the optical transport layer. An IPoDWDM network reduces cost per bit as well as operational overhead since a separate transport platform layer is not required, and network management can be consolidated. Eliminating the separate transport layer can also result in solution density improvements and reduced power consumption of approximately 25%.

Optical Infrastructure
Figure 2: Two architectures to support 400G IP/Ethernet traffic over an optical infrastructure are (1) traditional separation of the IP/Ethernet layer from the DWDM optical transport layer (top) or (2) IP-over-DWDM using 400ZR or OpenZR+ modules which plug directly into the switch/routers (bottom).

Transport optics in pluggable client form factors plugged directly into routers/switches is not an entirely new concept. What makes 400ZR/OpenZR+ different than earlier 100G solutions (besides the 4x capacity increase) is longer reach capability via coherent transmission, and wavelength tunability which provides operational benefits of deployment ease and spares reduction.

Legacy architectures that use a separate DWDM optical transport platform with a modular design (via line-cards or sleds) can be designed with an upgrade path to support these new 400G interfaces. Ethernet-centric ports can then be economically optimized using pluggable 400ZR or OpenZR+ modules.

 

Acacia_400ZR

Figure 3: Acacia 400G pluggable coherent optical modules supporting 400ZR and OpenZR+ (QSFP-DD on left, OSFP on right).

Some hyperscalers may find it necessary to maintain a separate IP layer from the optical transport layer, especially to support legacy infrastructure. Others may want to reduce the amount of equipment they have to manage using IPoDWDM if they do not require supporting legacy infrastructure, especially given scalability concerns.

To enable the wide adoption of 400ZR, these modules should be designed for volume production. However, packaging optics into the QSFP-DD/OSFP form factors is challenging. Complying with these compact mechanical designs while meeting specifications for performance, power consumption and cost focuses on three important areas: the DSP, optical/electrical component consolidation, and high-density packaging.

Acacia’s 3D Siliconization follows the example of the electronics world, applying integration and co-packaging techniques such as 3D stacking. Advantages of 3D Siliconization include the reduction of electrical inter-connects while preserving robust signal integrity, as well as using silicon photonics to leverage electronics semiconductor fabrication process suitable for volume production and high yields.

After much anticipation, the curtain has been drawn open. Entering onto the stage…400G pluggable coherent transceiver modules! The recent introduction of 400G solutions, such as Acacia’s 400ZR and OpenZR+ pluggable coherent optical modules, were designed to bring about another transformative implementation of optical networking solutions for data center interconnects.

Stay tuned for our next 400G blog, when we will go into more details on the applications driving OpenZR+ requirement.

]]>
400G for Edge DCIs with 400ZR https://acacia-inc.com/blog/400g-for-edge-dcis-with-400zr/ Thu, 01 Aug 2019 13:13:12 +0000 https://acacia-inc.com/blog/400g-for-edge-dcis-with-400zr/ Rapidly growing content demand is pressuring carriers, cloud providers, and traditional data center operators to boost the bandwidth of the data center interconnects (DCIs) that link their facilities. The Cisco Visual Networking Index predicts an estimated 4.8 billion global Internet users to be accessing content from an Internet comprised of 28.5 billion networked mobile devices and connections by 2020. Emerging applications such as the Internet of Things (IoT), 5G wireless, and ultra-high-density (8K) video are also poised to intensify demand.

To address the need for higher DCI bandwidth requirements to meet this growing demand, the optical networking industry began working on a solution known as the 400ZR implementation agreement, with a goal to combine optical line-side fiber capacity with the benefits of client-side solutions.

Spearheaded by the Optical Internetworking Forum (OIF), 400ZR aims to deliver accessible 400 gigabit-per-second (Gbps) Ethernet links for edge DCI applications. The 400ZR implementation agreement addresses edge-DCI applications with link distances targeting 80 km to 120 km and can be implemented in pluggable 400Gbps optical transceiver module form-factors used for client optics.

The primary 400ZR use case is to apply the technology to DCI edge networks.

The 400ZR standard leverages the reach and capacity benefits of coherent optical technology, while challenging the industry to implement the technology in compact pluggable module form-factors such as QSFP-DD and OSFP.

We recently published a market backgrounder that reviews the industry drivers behind the development of 400ZR, the key benefits of the technology, and a product-development roadmap for bringing 400ZR transceivers to market. It also provides a few predictions on how the technology could potentially change the industry. Check it out to learn more and let us know what your predictions are.

Read the White Paper

]]>
Coherent Applications – Trending to the Edge https://acacia-inc.com/blog/coherent-applications-trending-to-the-edge/ Wed, 25 Apr 2018 21:12:02 +0000 https://acacia-inc.com/blog/coherent-applications-trending-to-the-edge/ If you attended OFC 2018 in San Diego last month, you may have heard the buzz around advances in coherent technology to help meet growing bandwidth demand. These advances enable higher capacity and reach, and come in the form of newly demonstrated coherent modulation shaping techniques as well as advanced silicon photonics integration techniques. Whether you were very busy (as I was) in back-to-back meetings or did not have the opportunity to attend OFC, this blog post serves to put some perspective on why all the buzz at OFC and also serves as a refresher on the history of coherent technology, review some of the basics, and look at recent trends on how coherent technology is being applied to various markets.

A Brief History

Coherent optical technology was first introduced in long haul applications to overcome fiber impairments that required complex compensation techniques when using direct detection receivers. Leveraging advanced CMOS processing nodes and reduction in design complexity, coherent solutions have moved from long haul to metro and even shorter reach optical interfaces.

With the introduction of Acacia’s CFP-DCO module in 2014, coherent became an even more compelling solution for metro and data center interconnect (DCI) applications due to its pluggable pay-as-you-grow benefits, and integrated DSP design. Today, coherent is moving from metro core to access aggregation networks (Figure 1). Looking forward, the industry is working to standardize coherent solutions for even shorter reach interfaces.

Figure 1. Coherent solutions transitioning to shorter reaches.

 

This model of new technology adoption in long haul interfaces, followed by a migration to shorter reach applications, has been demonstrated in the industry before: the copper-to-fiber optics transition followed a very similar path starting in the 1980’s. Technologies, such as dense wavelength division multiplexing (DWDM) and forward error correction (FEC), also followed this same pattern. It is anticipated that this trend of shorter reach applications benefiting from initial long-haul technology investment as it applies to coherent will be no different.

Industry organizations such as the Optical Internetworking Forum (OIF), IEEE, and Cable Labs have initiated coherent standardization activities, recognizing the trend towards using coherent for shorter distances. The OIF is defining a coherent standard for DWDM interfaces in DCI applications with reaches up to 120km; CableLabs is defining coherent standards for cable access networks; and IEEE is considering coherent for unamplified applications beyond 10km. All of this standardization activity reinforces the view of coherent moving to shorter reach, high volume applications. As the applications move from 100G to 400G and beyond, it is likely that coherent will be used in even shorter reach interfaces.

Demand for Bandwidth is Driving New Coherent Markets

Today, coherent technology is already being deployed into markets with a wide array of applications ranging from 10’s of kilometers to 1000’s of kilometers. While network operators in each of these markets need to manage network expansion at the lowest cost, differences in network architectures and demands drive a unique set of priorities for each. Some of these key market applications we’ll explore in this blog include: Long Haul, Metro, DCI, Remote PHY Cable Access, 5G, and applications with unamplified interfaces. We’ll discuss these applications and the factors that drive solutions for their optical interconnecting requirements.

100G Long Haul: Many Fiber Spans with Optical Amplifiers

The long haul market, where coherent was first widely adopted, is still a large segment of the coherent ports shipped each year.

Typical Long Haul network
Figure 2. Typical Long Haul network.

 

This market is highly sensitive to performance because longer reach interfaces eliminate the need for additional costly regeneration. A key optical interconnection performance parameter for coherent DWDM long haul networks is optical signal-to-noise ratio (OSNR).

OSNR & Optical Amplifier Refresher

OSNR describes the relative energy of the signal carrying the information to the energy of the noise from other sources. Optical receivers are specified based on their ability to detect the desired signal in the presence of noise.

So, why is OSNR so critical to long haul DWDM networks? Optical signals are amplified as they are transmitted across the network. At each amplifier, the signal is degraded slightly–the level of the noise is amplified relative to the signal. When the signal level is so close to the noise that it is nearly un-detectable, it needs to be regenerated—the optical signal is converted to the electrical domain where the data can be accurately decoded. The same data is then recoded, retimed, and converted back to the optical domain with a high signal to noise ratio capable of passing through additional amplifiers.

Higher performance coherent optical interfaces allow longer reaches without needing regeneration, which ultimately lowers the cost of deploying and managing these networks.

Currently, 100G QPSK modulation is still widely used in long haul networks because it offers exceptional performance due to achievable OSNR margins and maturity of technology based on 25G electronics. Fiber capacity can be further enhanced by reducing channel spacing from 50GHz to 37.5GHz. Alternatively, capacity can also be increased over the channel by increasing the baud rate. For example, doubling to 200G capacity can be achieved by maintaining QPSK modulation while doubling the baud rate. However, this would require an increase to the channel spacing.  To ensure the required channel spacing remains unaltered (e.g., 50GHz), the modulation order also needs to be increased (e.g., from QPSK to 8QAM) as the baud rate is increased.

Simply put, there is an interdependency among baud rate, modulation order, required OSNR, and channel spacing. Transmission capacity can be increased by: (1) increasing the baud rate without changing modulation order, requiring wider channel spacing; (2) holding baud rate constant while moving to a higher modulation order, resulting in narrower channel spacing at the cost of OSNR margin—higher modulation order requires higher OSNR margin; or (3) increasing baud rate and moving to a higher modulation order, requiring no changes to channel spacing but assumes there is sufficient OSNR margin when moving to the higher modulation order. Thus to upgrade to higher capacity with minimal changes to the line system optics, (3) is an attractive option assuming there is sufficient OSNR margin.

Metro: High Density Solutions for ROADM Networks

Coherent interconnections have also been widely adopted in metro core networks (Figure 3). The dynamics in these networks are somewhat different from long haul. Metro core networks usually consist of many reconfigurable optical add-drop multiplexer (ROADM) nodes where wavelengths are dropped, added, or routed to other destinations. This is done using wavelength selective switches (WSSs)–each WSS is effectively an optical filter that can narrow the total bandwidth of the channel. Passing through multiple ROADM nodes can result in significant narrowing of the available spectrum of the complete optical path. These WSSs can introduce additional impairments, such as polarization dependent loss. Though the reaches in these applications are less than long haul, they still require a high level of performance due to the many link impairments.

Metro networks are not entirely about optical performance, though. Central offices can often be crowded and power limited. High density solutions that are power efficient can be particularly valuable in these applications.

Typical Metro network
Figure 3. Typical Metro network.

 

In addition, metro networks handle a wide range of traffic. These networks quickly become complex to manage, with different equipment required depending on the requirements. Common solutions that can be leveraged across multiple platforms, supporting a wide variety of traffic types, and scale capacity in a cost effective manner allow network operators to manage their operational costs more effectively.

Data Center Interconnect: Cost and Power Optimized Coherent

In the last 10 years, the optical networking industry has been transformed by the requirements of large cloud network operators. High capacity interconnections are necessary between these hyperscale data centers to enable cloud functionality (Figure 4).

Typical DCI/Cloud network
Figure 4. Typical DCI/Cloud network.

 

These DCI connections differ from traditional carrier networks in that they are usually point-to-point with no ROADMs in between, and can be within the same city or across oceans. Cost and power are generally the most critical parameters for these applications. Some use cases can be fiber constrained, making spectral efficiency a higher priority. Customers in these markets tend to be early adopters of new technology and have short product life cycles.

Large cloud network operators, along with some of the more traditional carriers, are driving changes in how network functions are partitioned between vendors, allowing them greater freedom to transition between vendors and product generations with minimal changes in the software used to control the network.

Remote PHY/Fiber Deeper: Coherent Technology for Cable Access

Access networks are an emerging opportunity for coherent interconnections. The cable industry is taking the lead in this segment by driving standardization of coherent for access aggregation.

Remote PHY network
Figure 5. Remote PHY network.

 

As the hybrid fiber-coax (HFC) networks evolve toward remote PHY architectures, fiber is being deployed deeper in the network (Figure 5), resulting in increased available bandwidth to residential end-user customers, while eliminating bottlenecks in the HFC network. 10G optical interfaces are pushed closer to the end users resulting in aggregation points in the network where 10-20 remote PHY devices come together.

Coherent can be an effective way to transport these aggregated signals back to the hub. In some cases, it may only be necessary to transport a single coherent wavelength back to the hub, but since coherent is inherently a DWDM technology, this approach provides the capability to expand capacity by up to two orders of magnitude in the future.

CableLabs is the standards organization of the cable industry and has recognized the need for this solution in the market. In 2017, they kicked off a project to define coherent standards for cable access aggregation applications. Acacia is participating in this project, along with many other leading optical networking vendors, as well as several large MSOs.

5G Drives Backhaul Growth

Another emerging access application is 5G backhaul (Figure 6). It is clear that backhaul demands in wireless networks are going to need to increase significantly. As more capacity is delivered to end users, the connections back to the core network must scale, as well.

Coherent offers several benefits in these access aggregation applications compared to traditional direct detect solutions. At higher data rates, it becomes very challenging to deploy direct detect solutions over 10’s of km’s without using dispersion compensation. Alternatively, solutions may consider many parallel optical interfaces, but that drives up the cost of the solution.

5G Backhaul network
Figure 6. 5G Backhaul network.

 

Today’s coherent implementations are generally based on tunable laser technology. While fixed laser implementations are a consideration in these applications, tunable solutions can offer operational benefits by significantly reducing the number of spares that need to be stocked. Tunable solutions also tend to support shorter lead times, accelerating the ability to turn up new services. Lastly, coherent solutions are future proof with the ability to scale capacity by increasing data rate or adding additional wavelengths.

Adoption of coherent technology in access networks could offer an additional benefit that may not be obvious at first. Since the same solutions can address a wide range of network interfaces (e.g., access aggregation, metro, and regional), it may be possible to collapse the supply chain for multiple applications into a single solution. This could offer significant operational efficiencies for network operators.

Unamplified Point-to-Point Interfaces

Unamplified point-to-point interfaces are essentially client optical interfaces for connections between buildings (Figure 7). As data rates have increased, it has been more and more challenging for direct detect solutions to address these kinds of applications. At 100G and 200G, proprietary coherent solutions are already used for links in the 40-80km range.

Point-to-point
Figure 7. Point-to-point.

 

Looking forward to 400G, this application is within the scope of the OIF 400ZR project. In addition, the IEEE study group that is considering solutions beyond 10km for data rates of 50G, 100G, 200G, and 400G is evaluating coherent alternatives for these applications.

Since these interconnections are not amplified, they are not characterized by their tolerance to low OSNR. In these applications, transmitter power and receiver sensitivity are the key parameters that define the usable link budget.

Coherent detection offers the same increase in performance for power limited sensitivity as it does for noise limited applications. Volumes for these applications can be larger than transport applications and coherent implementations will need to be cost effective and extremely power efficient.

Coherent is moving to shorter reach as data rates increase

As we’ve outlined in this blog, there are a number of applications for which coherent is well suited. DCI, metro, and long haul are existing markets that have benefited from coherent for several years now. Emerging applications such as Remote PHY for cable access, 5G backhaul, and unamplified “ZR” interfaces are evolving as standards efforts and deployment strategies are still in the early stages. What is clear is that operators struggling to meet the growing demands of bandwidth are motivated to optimize their optical networks for capacity and reach in order to minimize cost. And space and power restrictions continue to be a challenge as additional hardware is deployed in constrained environments. Standardization will help advance the coherent evolution underway.

Stay tuned for upcoming blog posts in which we will focus on how advanced 3D shaping of coherent modulation can optimize various types of coherent networks.

]]>